Order and disorder control the functional rearrangement of influenza hemagglutinin.

نویسندگان

  • Xingcheng Lin
  • Nathanial R Eddy
  • Jeffrey K Noel
  • Paul C Whitford
  • Qinghua Wang
  • Jianpeng Ma
  • José N Onuchic
چکیده

Influenza hemagglutinin (HA), a homotrimeric glycoprotein crucial for membrane fusion, undergoes a large-scale structural rearrangement during viral invasion. X-ray crystallography has shown that the pre- and postfusion configurations of HA2, the membrane-fusion subunit of HA, have disparate secondary, tertiary, and quaternary structures, where some regions are displaced by more than 100 Å. To explore structural dynamics during the conformational transition, we studied simulations of a minimally frustrated model based on energy landscape theory. The model combines structural information from both the pre- and postfusion crystallographic configurations of HA2. Rather than a downhill drive toward formation of the central coiled-coil, we discovered an order-disorder transition early in the conformational change as the mechanism for the release of the fusion peptides from their burial sites in the prefusion crystal structure. This disorder quickly leads to a metastable intermediate with a broken threefold symmetry. Finally, kinetic competition between the formation of the extended coiled-coil and C-terminal melting results in two routes from this intermediate to the postfusion structure. Our study reiterates the roles that cracking and disorder can play in functional molecular motions, in contrast to the downhill mechanical interpretations of the "spring-loaded" model proposed for the HA2 conformational transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning, expression and purification of hemagglutinin conserved domain (HA2) of influenza A virus, to be used in broad-spectrum subunit vaccine cocktails

Introduction: Influenza virus has several conserved peptides which have the capacity to be used as suitable candidates for appropriate and stable vaccine production against different types of influenza viruses. One of these peptides is HA2, the hemagglutinin stalk domain which mediates the membrane fusion and is conserved amongst different sub-types of influenza virus. This peptide is a good ca...

متن کامل

Bacillus subtilis as a Host for Recombinant Hemagglutinin Production of the Influenza A (H5N1) Virus

Abstract Background and Aims: Influenza A(H5N1) viruses  circulating in animals might evolve and acquire the ability to spread from  human to human and thus start a pandemic. Hemagglutinin (HA) has been shown to play a major role in binding of influenza virus to its target cell and the main neutralizing antibody responses elicit against this region. Recent studies have shown that...

متن کامل

Phylogenetic Analysis of Hemagglutinin Gene of H9N2 Avian Influenza Viruses Isolated from Chicken in Iran in 2010-2011: Emerging of a New Subgroup

Background and Aims: Hemagglutinin (HA) protein of Avian Influenza (AI) plays an essential role in the virus pathogenicity. AI H9N2 subtype causes significant economic loss in broiler and layer in poultry farms in Iran. AI viruses have a great involvement in evolutionary changes at nucleotide and amino acid levels and vaccines could induce faster rates of such changes. Up-dated understanding of...

متن کامل

Sequence Analysis and Phylogenetic Study of Hemagglutinin Gene of H9N2 Subtype of Avian Influenza Virus Isolated during 1998-2002 in Iran

Sequence analysis and phylogenetic study of hemagglutinin (HA) gene of H9N2 subtype of avian influenza virus isolates (outbreaks of 1998-2002) in Tehran province (Iran) were studied. Two sets of forward and reverse primers in highly conserved regions, based on sequences of HA gene in Genbank, were designed. PCR products of a 430-bp fragment of 16 isolates were sequenced and then were aligned wi...

متن کامل

A Reverse transcription-PCR assay for detection of type A influenza virus and differentiation of avian H7 subtype

Abstract : Avian influenza virus (AIV) infection is a major cause of influenza mortality in birds and can cause human mortality and morbidity. Although the risk of infection with avian influenza virus (AIV) is generally low for most people, the pathogenic virus can cross the species barrier and acquires the ability to infect and be transmitted among the human population; therefore the ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 33  شماره 

صفحات  -

تاریخ انتشار 2014